complexes of $c$-projective modules
Authors
abstract
inspired by a recent work of buchweitz and flenner, we show that, for a semidualizing bimodule $c$, $c$--perfect complexes have the ability to detect when a ring is strongly regular.it is shown that there exists a class of modules which admit minimal resolutions of $c$--projective modules.
similar resources
Complexes of $C$-projective modules
Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.
full textON PROJECTIVE L- MODULES
The concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. The notion of free fuzzy modules was introducedby Muganda as an extension of free modules in the fuzzy context. Zahedi and Ameriintroduced the concept of projective and injective L-modules. In this paper we give analternate definition for projective L-modules. We prove that e...
full textHomotopy category of projective complexes and complexes of Gorenstein projective modules
Let R be a ring with identity and C(R) denote the category of complexes of R-modules. In this paper we study the homotopy categories arising from projective (resp. injective) complexes as well as Gorenstein projective (resp. Gorenstein injective) modules. We show that the homotopy category of projective complexes over R, denoted K(Prj C(R)), is always well generated and is compactly generated p...
full textThe Homotopy Category of Complexes of Projective Modules
The homotopy category of complexes of projective left-modules over any reasonably nice ring is proved to be a compactly generated triangulated category, and a duality is given between its subcategory of compact objects and the finite derived category of right-modules.
full textOn two generalizations of semi-projective modules: SGQ-projective and $pi$-semi-projective
Let $R$ be a ring and $M$ a right $R$-module with $S=End_R(M)$. A module $M$ is called semi-projective if for any epimorphism $f:Mrightarrow N$, where $N$ is a submodule of $M$, and for any homomorphism $g: Mrightarrow N$, there exists $h:Mrightarrow M$ such that $fh=g$. In this paper, we study SGQ-projective and $pi$-semi-projective modules as two generalizations of semi-projective modules. A ...
full textProjective maximal submodules of extending regular modules
We show that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of Dung and Smith. As another consequen...
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyجلد ۴۲، شماره ۴، صفحات ۹۴۹-۹۵۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023